Electrochemical Reduction of Pyrrole in the Presence of Trinitrofluorenone: Isolation of a Meisenheimer Complex

Katsuyoshi Hoshino,*,† Nobuo Ozawa,† Hiroshi Kokado,† Hiroko Seki,[‡] Tatsuhiro Tokunaga,[‡] and Tsutomu Ishikawa*.§

Faculty of Engineering, Chemical Analysis Center, and Faculty of Pharmaceutical Science, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan

Received March 11, 1999

Polypyrrole is one of the most important conducting polymers,¹ and electrochemical polymerization is used for its film preparation.² On the other hand 2,4,7-trinitrofluoren-9-one (TNF) (1) is the best known electron-transporting material.³ In a study on the electrochemical preparation of alternative films, we have found that pyrrole (2) is electrochemically reduced to a green-colored product 3 in the presence of 1 and polymerized into a novel film by the subsequent electro-oxidation. Spectroscopic investigation of 3 led to its characterization as a Meisenheimer complex of 1 and 2. In this communication we present the first isolation of an electrochemically induced Meisenheimer complex including a nonbasic 2, together with a mechanistic rationale for the formation of the complex.

A solution of a mixture of 1 (0.02 M) and 2 (0.02 M) in acetonitrile (CH₃CN) containing tetraethylammonium perchlorate (Et₄N⁺ClO₄⁻) (0.1 M) as a supporting electrolyte was subjected to electroreduction under ice-cooling at a constant potential of -1.0 V vs a saturated calomel electrode (SCE) in a two-compartment type cell equipped with a platinum gauze cathode ($3.5 \times 12.5 \text{ cm}^2$, 55 mesh) and a platinum plate anode $(3.0 \times 2.5 \text{ cm}^2)$ under a flow of nitrogen (N₂). An electric current was passed for 27 h resulting in passage of 2 Faraday per mol of 1 for generation of a dianion 1^{2-} , during which time the color of the reaction mixture turned from orange into green via dull red. Workup of it after treatment with sodium perchlorate⁴ gave 3 as a green powder in 15% isolated yield. Electro-oxidation of 3 (at +1.1 V vs SCE in dichloromethane) produced a black film, different in electrical and electrochemical properties from the reported films² of polypyrrole obtained by direct electrooxidation of 2 (Scheme 1). For example, the cyclic voltammogram of the black film⁵ in a $Et_4N^+ClO_4^-$ (0.08 M)/ dichloromethane system exhibited unique cation-doping and dedoping waves at ca. -1.2 and +0.2 V vs SCE, respectively, which can never be observed in the voltammogram of conventional polypyrrole.

The ionic structure of **3** possessing a highly conjugated system was suggested by its UV-vis spectrum (in CH₃CN) $[\lambda_{\max} (\epsilon) 280 (11500), 368 (13500), 477 (15900), 611 nm$ (7100)]. **3** was stable at low temperatures in a limited range of solvents such as acetone and CH₃CN (no decomposition at 0 °C; $t_{1/2} = 20$ h at 20 °C; $t_{1/2} = 5$ h at 40 °C in acetone).⁶ A single peak at m/z 381 in the negative electron spray ionization (ESI) MS7 of 3 suggested an adduct composed of 1 (MW: 315) and 2 (MW: 67). The ¹H (500 MHz) and ¹³C NMR (125 MHz) spectra in acetone- d_6 at 0 °C indicated that **3** was a 9:2 mixture⁸ of isomeric compounds (the major isomer 3a, and the minor isomer 3b). Characteristic signals at $\delta_{\rm C}$ 50.31 and $\delta_{\rm C}$ 56.15 in the ¹³C NMR spectrum due to aliphatic methine carbons were found to be linked to protons at $\delta_{\rm H}$ 6.53 and $\delta_{\rm H}$ 7.06 in the $^1\!H$ NMR spectrum with a longrange coupling (J = ca. 1.0 Hz), respectively, by the ${}^{1}H^{-13}C$ HMQC experiment, suggesting the possibility of the products as Meisenheimer complexes.⁹ Cross-peaks in the $^1\mathrm{H}-^{13}\mathrm{C}$ HMBC¹⁰ and in the ¹H⁻¹⁵N HMBC¹¹ experiments supported that **3a** and **3b** were such complexes carrying a pyrrole unit attached at the 3 and 1 positions of the trinitrofluorenone component. On the other hand, positive ESIMS⁷ of **3** showed three characteristic peaks at m/z 64, 105, and 146 corresponding to [(CH₃CN)Na]⁺, [(CH₃CN)₂Na]⁺, and [(CH₃- $CN)_3Na]^+$, indicating the presence of a sodium ion $(Na^+)^{12}$ in 3 as a countercation. Thus, 3 was established to be an inseparable 9:2 mixture of sodium salts¹³ of isomeric Meisenheimer complexes of **1** and **2**, in which the addition reaction occurred mainly at the 3 position of 1 (Figure 1).

No reaction occurred under either nonelectrochemical or only one-electron reduction (-0.6 V vs SCE) conditions. Additionally, starting materials were completely recovered when 2 was treated with a dianion 1^{2-} independently prepared from 1. Thus, the complex 3 appears to be the

[†] Faculty of Engineering.

Chemical Analysis Center

[§] Faculty of Pharmaceutical Science.

⁽¹⁾ Street, G. B. In Polypyrrole: From Powders to Plastics in Hand Book of Conducting Polymers; Skotheim, T. A., Ed.; Marcel Dekker: New York, 1986; Vol. 1, p 266.

^{(2) (}a) Diaz, A. F.; Kanazawa, K.; Gardini, G. P. *J. Chem. Soc., Chem. Commun.* 1979, 635–636. (b) Kanazawa, K.; Diaz, A. F.; Geiss, R. H.; Gill, W. D.; Kwak, J. F.; Logan, J. A. *Ibid.* 1979, 854–855.
(3) Gill, W. D. *J. Appl. Phys.* 1972, 43, 5033–5040.
(4) In a preliminary experiment we observed that the product tended to the rest of Net Antice preliminary experiment.

incorporate Na+ during purification by column chromatography (SiO2) using Wakogel C-100, which is known to contain a small amount of Na⁺. Workup was carried out as follows: After evaporation of the solvent followed by washing with diethyl ether, the residue was passed through a short SiO_2 column chromatography eluting with acetone—hexane (1:1) to remove highly polar red-colored material. A slight excess of NaClO₄ was added to a solution of the crude product in acetone—hexane (3:1), and then the mixture was wrife the SiO elument themattematic at the solution of purified by SiO₂ column chromatography to give 3.

⁽⁵⁾ Characterization of the new film will be discussed elswhere.

⁽⁶⁾ The changes in the absorption maxima in the UV-vis spectra were followed with time. The values of $t_{1/2}$ in DMSO and in MeOH at 20 °C were estimated to be 10 and 4 h, respectively, by the same experiment. A powder of 3 could be stored without decomposition at 0 $^\circ C$ in an inert atomosphere.

⁽⁷⁾ CH₃CN was used as a solvent for preparation of samples for measurement. The expected peak due to a molecular ion could not be observed in the FABMS of 3.

⁽⁸⁾ Separation of the isomeric products has not been achieved to date. (9) (a) Halle, J. C.; Terrier, F.; Pouet, M. J.; Simonnin, M. P. *J. Chem. Res.* (S) **1980**, 360–361. (b) Sepuleri, P.; Goumont, R.; Halle, J.-C.; Buncel, E.; Terrier, F. J. Chem. Soc., Chem. Commun. 1997, 789-790.

⁽¹⁰⁾ Selected assignment of the cross-peaks as follows: [3a: $\delta_{\rm H}$ 6.67 (b) Selected assignment of the closs-peaks as bolows. (ba. $\phi_{\rm H}$ 0.67 ($C_{\rm a}$ -H)- $\delta_{\rm C}$ 120.86 ($C_{\rm a}$), $\delta_{\rm H}$ 7.06 ($C_{\rm 3}$ -H)- $\delta_{\rm C}$ 122.56 (C₁), $\delta_{\rm H}$ 7.06 ($C_{\rm 3}$ -H)- $\delta_{\rm C}$ 13.02 ($C_{\rm 4a}$), $\delta_{\rm H}$ 8.12 ($C_{\rm 1}$ -H)- $\delta_{\rm C}$ 56.15 ($C_{\rm 3}$), $\delta_{\rm H}$ 8.12 ($C_{\rm 1}$ -H)- $\delta_{\rm C}$ 156.15 ($C_{\rm 3}$), $\delta_{\rm H}$ 8.12 ($C_{\rm 1}$ -H)- $\delta_{\rm C}$ 13.02 ($C_{\rm 4a}$), $\delta_{\rm H}$ 8.12 ($C_{\rm 1}$ -H)- $\delta_{\rm C}$ 56.15 ($C_{\rm 3}$), $\delta_{\rm H}$ 8.12 ($C_{\rm 1}$ -H)- $\delta_{\rm C}$ 50.31 ($C_{\rm 1}$), $\delta_{\rm H}$ 6.53 ($C_{\rm 1}$ -H)- $\delta_{\rm C}$ 120.02 ($C_{\rm a}$), $\delta_{\rm H}$ 6.53 ($C_{\rm 1}$ -H)- $\delta_{\rm C}$ 130.92 ($C_{\rm 3}$), $\delta_{\rm H}$ 6.53 ($C_{\rm 1}$ -H)- $\delta_{\rm C}$ 188.88 ($C_{\rm 9}$), $\delta_{\rm H}$ 6.53 ($C_{\rm 1}$ -H)- $\delta_{\rm C}$ 188.88 ($C_{\rm 9}$), $\delta_{\rm H}$ 8.82 (C₃-H)- $\delta_{\rm C}$ 145.02 (C_{4a})].

⁽¹¹⁾ Nitromethane in acetone was referenced to 0 ppm as an external standard. Selected assignment of cross-peaks as follows: [3a: $\delta_{\rm H}$ 7.06 (C₃-H)– $\delta_{\rm N}$ –11 (C₂–N), $\delta_{\rm H}$ 8.12 (C₁-H)– $\delta_{\rm N}$ –11 (C₂–N); 3b: $\delta_{\rm H}$ 8.82 (C₃-H)– $\delta_{\rm N}$ –10 (C₂–N)], while no cross-peak between C₁-H and C₂–N in the minor isomer 3b was observed.

⁽¹²⁾ A signal due to Na⁺ was observed at δ -7.50 in the ²³Na NMR (in CH₃CN-d₃), where NaCl in D₂O was referenced to 0 ppm as an external standard.

Figure 1. An inseparable mixture of Meisenheimer complexes **3**.

Figure 2. Cyclic voltammograms of (a) **1** in the absence of **2** and (b) **1** in the presence of **2** in CH₃CN (2.0 mM) containing 0.1 M $Et_4N^+ClO_4^-$. Scanning rate = 20 mV s⁻¹.

result of two-electron transfer occurring after complexation of **1** and **2**. Lack of N-substitution of the pyrrole component was shown to be a prerequisite for the formation of **3**, because indole and carbazole gave green adducts¹⁴ with similar absorption spectra to that of **3**, but no generation of a green analogue of **3** was observed with *N*-methylpyrrole in place of **2**. Furthermore, we observed that the dull-red color was maintained during the whole period of reaction (>27 h) when N₂ was continuously bubbled into the solution throughout the electroreduction, while the reaction mixture immediately became green under aerobic conditions. The dull-red solution in the former case dramatically turned green on exposure to air. Isolation of the same green adduct **3** in each case showed the crucial role of O₂ in the product formation.¹⁵

These experimental data could lead us to speculate as to the mechanism of the electrochemical formation of Meisenheimer complex **3** (Scheme 2), in which (i) **1** interacts with **2** to form a complex **4** in equilibrium (step 1), (ii) a stepwise reduction of **1** yields a radical anion **1**^{•–} (step 2a) and a dianion **1**^{2–} (step 3),¹⁶ (iii) direct one-electron transfer to **4** gives a complex radical anion **5** (step 2b), which can be indirectly produced by complexation between **1**^{•–} and **2**, (iv) **2** itself is not reduced under this condition. However, **1**^{•–} in species **5** is expected to be similar to **1**^{2–} due to donation of electrons of **2** to **1**^{•–}. Thus, the second electron would be

transferred to the resultant electron-withdrawn pyrrole unit to produce a double radical anion **6** (step 4), (v) O₂ is known to act as a radical scavenger.¹⁷ Therefore, attack of O₂ to the hydrogen atom of an activated pyrrole with radical character as in **6** causes collapse into an anionic σ -complex **3**⁻ and hydroperoxide anion (step 5), and (vi) **3**⁻ is finally stabilized by incorporation of Na⁺ (step 6).¹⁸

A cyclic voltammetric study on the electrochemical reaction seems to support the proposed mechanism. The cyclic voltammogram of **1** in CH₃CN showed two well-defined reduction waves with half-wave potentials of -0.49 V and -0.73 V vs a SCE (curve a in Figure 2) due to the formation¹⁹ of a radical anion **1**^{•–} and a dianion **1**^{2–}, respectively. On the other hand, an additional third wave (-0.84 V vs SCE), attributable to the formation of a complex double radical anion **6**, was observed in that measure on the reaction mixture (curve b in Figure 2).

In conclusion, the electroreduction of pyrrole (2) in the presence of TNF **1** results in the formation of an isolable Meisenheimer complex **3**, which could be produced by action of O₂ to a complex radical anion **6**. Anionic σ -complexes are generated by strong interaction of electron-deficient aromatics such as **1** with nucleophiles.²⁰ Nitrogen bases which do result in formation of complexes have previously been limited to either aliphatic primary or secondary amines or amide bases.^{9a} Therefore, this is the first isolation²¹ of a Meisenheimer complex with a nonnucleophilic pyrrole molecule produced under an electrochemical (nonbasic) condition.

Supporting Information Available: 1D (¹H and ¹³C) and 2D (¹H-¹³C HMQC, ¹H-¹³C HMBC, and ¹H-¹⁵N HMBC) NMR spectra of **3**. This material is available free of charge via the Internet at http://pubs.acs.org.

JO9904361

⁽¹³⁾ Elemental analysis of $C_{17}H_9N_4O_7Na$ as the expected formula of **3** was calculated to be C, 50.50; H, 2.24; N, 13.86; Na, 5.69. The combustion analysis of **3** for C, H, and N using three different instruments gave the average data of C, 48.12; H, 3.14; N, 11.78, and the atomic spectrum of **3** for Na gave 4.44% of Na. The ¹H and ¹³C NMR spectra of **3** in CH₃CN-d₃ at 0 °C showed the inclusion of nearly one molar ratio of acetone. On the basis of these data, we concluded that **3** was isolated as $C_{17}H_9N_4O_7Na \cdot mC_3H_6O \cdot mH_2O$ (e.g., calcd for $1'_3C_{17}H_9N_4O_7Na + 2'_3C_{17}H_9N_4O_7Na \cdot C_3H_6O \cdot 2H_2O$; C, 48.96; H, 3.31; N, 12.11; Na, 4.97).

⁽¹⁴⁾ Although attempts to isolate these adducts failed due to their instabilities, successive electro-oxidation under the same condition as with adduct **3** afforded the corresponding new films. Their characterization will be discussed elswhere.

⁽¹⁵⁾ It is inevitable that O₂ will permeate into a cathode compartment from the anode compartment through a sintered glass filter during extended periods of electrolysis even under a nitrogen atmosphere.

periods of electrolysis even under a nitrogen atmosphere. (16) Highly polar red coproducts would be derived from dianion 1^{2-} .

⁽¹⁷⁾ Curran, D. P. In *Comprehensive Organic Synthesis*, Trost, B. M., Fleming, I., Eds.; Pergamon Press: Oxford, 1984; Vol. 4, p 715.

⁽¹⁸⁾ Hydroperoxide anion may be scavenged by other species including the solvent.

⁽¹⁹⁾ Loutfy, R. O.; Hsiao, C. K.; Ong, B. S.; Keoshkerian, B. *Can. J. Chem.* **1984**, *62*, 1877–1885.

 ^{(20) (}a) Strauss, M. J. *Chem. Rev.* **1970**, *70*, 667–712. (b) Terrier, F. *Ibid.* **1982**, *82*, 77–152. (c) Artamkina, G. A.; Egorov, M. P.; Beletskaya, I. P. *Ibid.* **1982**, *82*, 427–459.

⁽²¹⁾ Recently a π -complex precursor in Meisenheimer complex formation was isolated in the reaction between trinitrobenzene and sodium indole 3-carboxylate in MeOH.^{9b} The π -complex was shown to rapidly give rise to the corresponding σ -complexes, when it was placed in DMSO. The authors pointed out the important role of an increased charge density of an indole nucleus by substitution of a carboxylate ion at the 3 position for these complex formations.